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Abstract
We present the concept of dynamically available volume as a suitable order
parameter for dynamical arrest. We show that dynamical arrest can be
understood as a de-percolation transition of a vacancy network or available
space. Beyond the arrest transition we find that droplets of available space are
disconnected and the dynamics is frozen. This connection of the dynamics to
the underlying geometrical structure of empty space provides us with a rich
framework for studying the arrest transition.

(Some figures in this article are in colour only in the electronic version)

It is a central observation in Nature that, for some appropriate choice of experimental
conditions such as temperature, density, and more complex experimentally determined external
parameters, the molecules or particles (or other objects in the system) essentially stop moving1

in a reproducible manner, even though the thermodynamic potentials are not minimized.
The phenomenon has been termed dynamical arrest, and the outcome, the arrested state of
matter [1, 2]. Such phenomena are ubiquitous, constituting a much larger class of behaviour
in Nature than that described by the statistical theory of Boltzmann [3].

Examples in practice have been termed gelation [4–11],‘solidification’, glassification [12–
17], jamming [18, 19], and the ergodic–non-ergodictransition. Furthermore, they are observed
in diverse systems, from simple atomic substances (‘glassification’) to particle and colloidal
dispersions (aggregation, or particle gelation) to polymers and proteins. The view has recently
arisen that these are all manifestations of the same phenomenon, and may admit a common
theoretical description. The present paper represents a possible conceptual framework for such
a theory [1, 2].

1 In practice it is considered that many systems do not completely stop moving, but that there is a sharp and reproducible
phenomenon in which the nature of the dynamics changes so profoundly that, beyond this ‘arrest’, such large scale
motions as remain occur on a profoundly different timescale.
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There is, in fact, currently only one microscopic theory that purports to describe glassy
systems, mode-coupling theory (MCT) [20, 21]. Attempts have been made to relate this to
mean-field scenarios (such as that of the p-spin model) but to date the qualitative, and in some
cases quantitative, successes [4–11] of MCT have not been rationalized. This should remain
an aim of any conceptual development in the overall theory of dynamical arrest.

We may also remark that, despite many successes in the broader field of glass theory [12–
17], both in practical and conceptual terms, the arena has lacked a concept of ‘order parameter’
that is directly related to the physical state, and properties of the system. Such concepts were
central to the mastering of critical phenomena, because they strip away the non-essential
details occurring at the transformation, leaving only those features that drive it, and ultimately
exposing its underlying simplifications [22].

Other, older, pictures of arrest or vitrification may provide hints. These emphasize the
importance of ‘free’ volume in determining the phenomenon of dynamical arrest [23, 24].
However, the concept of ‘free’ volume has had different meanings for different authors,
perhaps because there was little microscopic basis for the early research, and different semi-
phenomenological laws are often fitted equally well by experimental data. Nevertheless, a
strong opinion has endured that it is the unfilled rather than the filled space on which one
should focus in describing these systems. We shall here propose that empty space is indeed
key to understanding arrest, but that the type (‘usable’ by a dynamics step) and geometry of
that empty space enter in a crucial manner.

We have chosen to divide empty space into two types: volume that is and is not dynamically
available to the system on the short timescale and small length scale, these being set by some
microscopic cut-offs upon which the arrest is not crucially dependent. The first type of empty
space we name dynamically accessible volume (DAV) and the second, vacancy volume [1].
Where exchange is possible between different regions of DAV they are considered connected.
These ideas are readily expressed in lattice models of dynamical arrest, where empty sites that
are accessible to at least one particle in the next move (DAV) are named holes, all other empty
sites being termed vacancies. Holes arise from quite different local particle arrangements for
different models, but their definition as carriers of transport is general.

It is the central proposition of this paper that it is the geometrical arrangement of these
two types of empty space (hole and vacancy) that determines the nature, and laws, of arrest.
The geometry of these entities determines the type of connectivity of phase space, and we
shall see that using the language of DAV, there are only a few classes which can be understood
relatively easily. In particular, we find new features arising when de-percolation transitions
in holes and vacancy space arise. The centrality of the percolation transition renders many
features of dynamical slowing universal, a point that has been missed in previous conceptions
of dynamical arrest.

Our ideas are not dependent on any particular model or system, but to illustrate our points
we choose two models of different conceptual types, the Kob–Andersen (KA) [25] kinetic
model and the Biroli–Mezard (BM) ‘landscape’ model [26], both of which are known to
describe dynamical arrest. There are numerous other models that we expect to behave in a
similar manner to what we describe here [3, 27, 28]. In the KA case, particles are prohibited
from moving out of a site if it is ‘caged’ by more than c particles, or into a site if, after
moving there, it is similarly caged. In the Biroli–Mezard model an (infinite) energy cost is
assigned to particles that are surrounded by more than c nearest neighbours. In this paper,
apart from the use of larger system sizes, and much longer times, facilitated by some technical
developments, single-particle diffusion constants are determined from the two types of model
in the standard manner and, where applicable, are consistent with those given by the earlier



The geometry of empty space is the key to arresting dynamics S4843

Figure 1. A universal scaling plot (D ∝ ν2) for the KA sc (♦), KA fcc (×), BM13 (◦), and
EM13 (�) cases. The dashed line has a slope of 2.0. We also plot the lattice gas result as a solid
line (D ∝ ν).

authors2. We also calculate the mean hole density ν, either exactly as in the KA model, or
numerically in the BM model from simple equilibrium methods.

We have earlier reported that, over an extended range of near-arrest densities, the single-
particle diffusion constants of such models are quadratic in the hole density [1], leading to an
idea that there is an extended regime of ‘universality’ in such models. In figure 1 we plot data
in the form log(D/γ ) versus log(ν) where ν is the bulk hole density and γ is a non-universal
constant. The slope of the line is exactly 2.0 for the BM model and also for the ‘extended
model’, EM [1], while in the KA models it deviates from 2.0 at very high density.

We have previously been able to understand the simple quadratic hole dependence [1] on
the basis that most single holes are readily trapped, because of the restrictive constraints on
particle motion. In contrast, in the lattice gas model there is a linear dependence of diffusion
on hole density.

Two holes are able to cooperatively move together, although they often need the presence
of excess vacancies with which they can exchange identity. This point is well illustrated in the
BM model (see figure 1) where the arrest occurs only around ρ = 0.56, vacancies are always
in excess, and the quadratic behaviour continues to vanishingly small hole densities. There,
arrest appears to occur due to simple exhaustion of the DAV.

We have also noted that, for some models, as the density is increased yet further, there
is a fraction of ‘rattlers’ (that is, particles that move in a limited manner) present without
contributing to the diffusion. We observe that the KA model, unlike the BM model, exhibits
an apparent deviation from the quadratic behaviour (see figure 1) at highest densities (higher
than have been studied before). For lower particle densities in the KA model, such as those
previously studied, there has been sufficient vacancy density on which hole pairs can form and
move, leading to sustained motion.

Now we are able to understand the deviation and, for the first time, identify the origin of the
arrest phenomena observed by means of simulation in such models. The answer, remarkably,

2 As the density increases the simulation time needed to accurately determine the diffusion constant also increases.
Our determination of the diffusion constant is based on simulation times at least an order of magnitude longer than the
crossover time. Our results agree with the previous results at all densities except the highest, where we find slightly
lower (and more accurate) diffusion constants due to our longer simulation times (1010 MCS as compared to 107

MCS).
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(a)  ρ = 0.87 (b)  ρ = 0.85 (c)  ρ = 0.82 (c)  ρ = 0.65

Figure 2. Sample configurations from the fully arrested state (a) to the fully connected state (d)
(corresponding to the locations indicated on figure 3). In the fully connected state (d) the percolating
vacancy network is made up of all holes (dark/red) and vacancies (light/pink) in the system. This
vacancy cluster facilitates diffusive particle motion. On approach to arrest the vacancy network
de-percolates and in (c) the last percolating cluster is shown—the disconnected vacancies are the
smaller/blue objects. In (a), there is no percolating vacancy network, but some large vacancy
droplets are visible. These droplets are isolated from each other so that particles on the droplets
cannot diffuse and the state is arrested.

is connected to the geometry of the dynamically accessible volume. The evolution of the
geometry of the holes and vacancy volumes for the SC lattice is illustrated in figure 2.

Thus, for the simple cubic and fcc examples above, the last extended hole cluster spanning
the whole system de-percolates3, leaving droplets of holes, some of which are isolated from
any extended network of vacancies, and therefore are unable to contribute to diffusion in a
direct manner (figure 2). The locations of these hole de-percolation transitions, as calculated
by conventional percolation theory, correspond to the deviation from the simple quadratic law,
and we find that only those holes occupying a vacancy percolation cluster remain carriers of
transport. Beyond this point some holes become isolated, there being insufficient holes or
vacancies in their vicinity to ensure free extended motion. However, if we recalculate the hole
density on the extended vacancy network (all such holes being able to contribute to diffusion)
then we find, once more (see the red lines in figures 3 and 4), simple characteristic behaviour.
The quadratic dependence on holes extends to higher particle density4. We may then write, in
great generality for such models,

D = γ2ν
2
p (1)

where the coefficient γ2 is a non-universal coefficient, and νp is the density of holes on the
system-spanning network of vacancies. Here, particles that are or are not associated with
connected DAV undergo an enormous and spontaneous separation of timescales, equivalent

3 When we refer to de-percolation we mean that, as the particle density increases, the vacancy and hole densities
decrease. On the lattice it is trivial to study the classical percolation transitions of holes and vacancies using whatever
definition of connectivity is desired. Here we define holes and vacancies to be connected if they are diagonally related,
for it is essentially diagonal relationships of holes that lead to assisted or correlation multi-hole motion. We find that
(for the system sizes studied, L = 50–120), the percolation transitions of these entities are consistent with random
percolation exponents. The percolation transitions for both are marked on the appropriate figures, for system sizes
studied in the dynamics. On increase of particle density the hole de-percolation transition occurs first, leading to
some disconnected hole droplets, not attached to the infinite vacancy cluster. Then follows the vacancy de-percolation
transition, at which point even hole droplets inside vacancy droplets are no longer able to move through the system
on computational timescales.
4 Naturally, in simulation studies, we cannot claim any truly asymptotic dependences. Nevertheless we believe
that we are interpreting those effects that dominate previous simulations, and probably much of the experimental
observation so far.
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Figure 3. log(D) against log(ν) for
the sc Kob–Andersen L = 50 (3D)
case. The (◦) points, calculated for
the total hole density ν, show a clear
deviation from the quadratic law (red
line). However, when we plot the
connected hole density νp we find
agreement with the quadratic law (×).

Figure 4. log(D) against log(ν) for
the fcc Kob–Andersen L = 64 case.
The (◦) points represent the total hole
density ν and the (×) points represent
the agreement of the connected hole
density νp with the quadratic law (red
line). The arrow indicates the de-
percolation transition of the second-
neighbour vacancy cluster.

to a sort of DAV micro-phase separation. In the extreme case, the DAV-poor regions undergo
complete arrest, and effectively take no further part on any timescale, while in others the
separation is large, but finite. Unlike the BM model, the KA model has no hard local
density constraint, thus allowing particle configurations to sustain a vacancy de-percolation
(see figure 5), leading to a complete quenching of the percolative transport mechanism. We
then find a remarkable ‘critical’ point of the transport at which holes travel on the last remaining
(‘critical’) vacancy percolation cluster, yielding a universal sub-diffusive law,

r = αtβ . (2)

Here β is expected to reflect both fractal (mass) and spectral (elasticity) dimensions. We
estimate values of β = 0.4, and, within our numerical accuracy, the exponents are the same for
the two different lattice types. This scenario has, in different manifestations,been contemplated
before, but until now has not been established for arrest [29–31]5.

5 We find that this sub-diffusive behaviour grows from the short timescale, ultimately extending over the measurable
time regime as the size of (finite) correlated clusters grows (the infinite cluster ultimately dominating away from
de-percolation). Thus, diffusion constants vanish because moving particles are forced to remain longer (and travel
further) on fractal pathways, these dominating completely at the de-percolation point to produce an exponent β, less
than unity, and hence a vanishing diffusion constant.
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Figure 5. A sample mean square
displacement for the simple cubic KA
case at ρ = 0.884, L = 20. Each
run is for a different random initial
condition. For early times the mean
square displacement scales with time
as 〈r2(t)〉 ∝ t2β where β = 0.4.

Figure 6. A sample arrested configuration—the
disconnected vacancy droplets are visible (larger
spheres). The particles which were mobile during the
course of the simulation move only within the droplets
and are shown as the small dark (green) particles.

Beyond this, vacancy de-percolation occurs, and this type of diffusive motion is quenched.
In figure 6 we illustrate the point visually by showing a configuration just beyond vacancy de-
percolation in which there are large but isolated clusters of vacancies (inside which there
remain ample holes) and some isolated hole droplets where motion is negligible. Holes living
on extended vacancy clusters continue to move, but ultimately travel only a typical diameter of
the vacancy cluster, leading to saturation of the mean square distance travelled. This is shown
in figure 5, where the diffusion is quenched after very large times, the asymptotic mean square
distance travelled being consistent with the hole-populated vacancy size, as determined by a
cluster counting algorithm6.

Thus the phenomenon of de-percolation or disjoining of dynamically available volumes
is the origin of the observed dynamical arrest, and, originating in a universal geometrical
phenomenon, the laws possess many elements of universality. We believe that this is the

6 Vacancy cluster counting methods such as those used in percolation studies are used. From the known largest cluster
size and the numbers of particles moving within them, we calculate the predicted asymptotic mean square distance
travelled and the result is in agreement with simulations (see figure 5).
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origin of many of the precipitous changes of dynamical behaviour and rheological behaviour
observed in Nature.

In some models, holes on vacancy droplets (these droplets become smaller as density
increases) can still provide some residual large scale motion, on a much longer timescale
(indeed these are expected for some models [32, 33, 1]), but such contributions are not
observable in the simulations here. Such mechanisms would lead to diffusion constants smaller
than anything observed in any simulations. However, one can explore the processes implied
by this geometry. Thus, particles can move into holes on the interface between a region of
immobilized particles and the vacancy cluster, and be transported to another part of that cluster.
Thereby the low particle density of the vacancy cluster is preserved, while the whole cluster
moves. Consequently particles can move across extended regions of space, and contribute to
a new diffusion regime.

We may sum up the slowed dynamics scenarios present in models, and possibly in
Nature (figure 2), as comprising (a) percolating DAV, (b) holes moving on the infinite vacancy
network—which may be exhausted, leading to a form of arrest (cf the BM model), (c) holes
moving on the critical vacancy cluster, (d) holes moving within vacancy droplets (constituting
the arrested—or nearly so—state). We note carefully that the most general model of dynamical
arrest will possess two independent degrees of freedom (hole and vacancy density) and the
geometries of these portions of empty space may be independently varied. Since this has not
been understood previously, existing models vary only the particle density, and the hole and
vacancy densities then vary in an ill-controlled and dependent manner. In the interpretation
of experiments in the field, this has been one source of confusion, because one is looking at
different regimes, some where existing theory works, others where it does not. This has until
now represented a major impediment to the development of a coherent and universal view of
dynamical arrest.

From a purely theoretical point of view, the picture that we offer holds great promise
for interpreting existing theory, and further rapid development of the field. Thus, crucially,
the order parameter consists of excitations that are highly diluted, albeit sometimes with a
complex geometry. The phenomena are also driven, in an unexpected manner, from the long
length scale, where universality is to be expected. Together these observations hint towards a
tractable theory where weak coupling tools, properly framed, may master the processes.

As the systems become denser, we can expect some highly cooperative dynamical
processes to survive the second-neighbour vacancy de-percolation transition. These processes
can move along vacancy structures which are connected in a highly non-trivial manner. In
this high density regime, diffusion is still possible, but the connected available space is now
described by ideas from bootstrap percolation [34].

We may expect most elements of our description to survive into a continuum description,
and into Nature, though much remains to be established there. In particular, we believe
that elements of the story may already have been observed but not yet interpreted. Thus, it
is well known that there exist ‘dynamical heterogeneities’ in glassy and other near-arrested
systems [35–37]. It has been understood that there is a length associated with more and less
densely compacted parts of the system, to which one has sometimes associated some loose
concept of ‘slow’ and ‘fast’ particles. We believe that these low density domains are closely
connected to our domains of hole and vacancy networks, noting that it is indeed only in the
vicinity of these domains that particles (‘holes’) can move,and appear to be ‘fast’. The ‘strings’
of fast particles may be close to the percolating vacancy network outlined here, implying a
degree of universality not yet sought.

However, the implications of this identification are profound in a more general sense, for
it relates experimentally observable phenomena to the basis of future theoretical descriptions,
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with the bridge being the geometrical concepts outlined there. We could therefore expect
there to be a concept of vacancy space upon which DAV travels, the picture adjusting as
density is increased. If this is confirmed, then it is essentially the geometry of these dynamical
heterogeneities that is the key to describing a rich set of dynamical behaviours for near-arrested
systems, and we expect any encompassing theory of dynamical arrest to accommodate a
concept of geometry.
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